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The problem of the thermal action on oil and gas strata by injection of a heating medium using expan-
sion in a small parameter is reduced to an infinite sequence of boundary-value problems that are
solved by the method of integral transforms. It is shown that, with an appropriate selection of the small
parameter, the zeroth-order approximation corresponds to a space-averaged (across the stratum thick-
ness) solution of the main problem and leads to a "concentrated-capacity scheme" that is constructed
assuming that the stratum temperature is independent of the vertical coordinate. The first approxima-
tion permitted marked refinement of calculations according to the "concentrated-capacity scheme" and
an evaluation of its error. Space-time temperature distributions are presented that have been calculated
using the analytical solutions obtained.

Introduction. The pressure in oil and gas strata is usually maintained by injecting water. A detrimental
side effect here is stratum cooling, which reduces the oil output. The temperature fields in oil and gas strata
are studied in a great many works of the scientific schools of Kazan and Lithuanian State Universities, scien-
tific-research and design institutes of the oil and gas industry [1-4], and foreign researchers [5]. The oil output
is increased using injection of a heating medium. Interest in the problem of the temperature fields in oil and
gas strata is also fairly great in connection with various geophysical applications.

Calculation of the temperature fields with water injection into oil and gas strata necessitates solution of
problems of convective heat conduction. The complete system of equations describing these problems is rather
complicated and contains the continuity equation, the equation of motion, the energy equation, and the equation
of state of the substance. Solutions of this system are difficult to obtain in general form; therefore simplifica-
tions should be introduced.

Among the most efficient methods of simplification of such problems is the "concentrated-capacity"
method, which assumes that the stratum temperature is invariable across the thickness [1-4]. However, the con-
centrated-capacity scheme has drawbacks of its own. It is suitable only for calculating mean values and offers
no opportunity for evaluating the error arising in the calculations.

Below, a method is proposed for simplifying the problem of convective heat conduction using a small
parameter. When it is selected appropriately, the zeroth-order approximation coincides with the concentrated-
capacity scheme, and higher approximations permit an evaluation of the error introduced in the calculation.

In the work proposed, consideration is given to a two-dimensional axisymmetric problem in a cylindri-
cal coordinate system that describes the temperature distribution with water injection into porous oil and gas
strata.

1. Problem Formulation. We assume that water with a specified temperature is injected into a hori-
zontal stratum of thickness −h < zd < h through a small-radius well (Fig. 1). For simplicity, the temperatures of
the skeleton of the porous medium and the incompressible fluid that saturates it are supposed to be identical,
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since the heat transfer between the skeleton and the fluid proceeds fairly rapidly. This assumption is fulfilled,
since the specific surface of porous oil and gas strata is large. The fluid is regarded as incompressible, for
simplicity phase changes are disregarded, and capillary forces, gravity, and temperature variations of the vol-
umes and the thermal properties of the system in question are neglected.

A constant temperature T0 is maintained in the fluid arriving at the stratum at r = 0. When hot fluid is
injected, heat propagation in the stratum occurs by convection along the radial axis and by heat conduction in
the vertical direction. Concurrently, heat transfer occurs by heat conduction between the stratum and the adjoin-
ing, overlying and underlying, rocks; radial heat conduction is neglected. As a result of the joint action of the
indicated factors, the stratum temperature is a function of two space coordinates and time. Conditions of equal-
ity of the temperatures and the heat fluxes at the stratum boundaries are postulated, and initial and boundary
conditions are imposed.

The mathematical formulation of the problem in dimensionless coordinates is of the form

∂T1

∂t
 = 

∂2T1

∂z2  ,   t > 0 ,   z > 1 ; (1.1)

λ1b2

λ2

 
∂T2

∂t
 = 

∂2T2

∂z2  ,   t > 0 ,   z < − 1 ; (1.2)

εb 
∂T

∂t
 = 

∂2T

∂z2  − ε 
B

λ1r
 
∂T

∂r
 ,   t > 0 ,   r > 0 ,   _z_ < 1 ; (1.3)

∂T

∂z



 z=1

 = ε 
∂T1

∂z



 z=1

 ;   
∂T

∂z



 z=−1

 = ε 
λ2

λ1
 
∂T2

∂z



 z=−1

 ; (1.4)

T_z=1 = T1_z=1 ;   T_z=−1 = T2_z=−1 ; (1.5)

T_t=0 = 0 ;   T1_t=0 = 0 ;   T2_t=0 = 0 ; (1.6)

T_r=0 = 1 ;   T_r→+∞ = 0 ;   T1_z→+∞ = 0 ;   T2_z→−∞ = 0 , (1.7)

where

t = 
τλ1

ρ1c1h2 ,   z = 
zd

h
 ,   r = 

rd

h
 ,   B = 

Qρc

4πh
 ,   b = 

ρc

ρ1c1

 ,   b2 = 
ρ2c2

ρ1c1

 ,   T = 
Td

T0

 ,T1 = 
Td1

T0
 ,   T2 = 

Td2

T0
 ,   ε = 

λ1

λ
 .

Fig. 1. Geometry of the problem.
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2. Expansion of Solutions in Power Series. The coefficient ε entering into Eqs. (1.3) and (1.4) is in
most cases smaller than unity. This can be explained proceeding from the following reasoning. As a rule, there
is no convective heat transfer in the rocks surrounding the stratum; therefore the thermal conductivity is repre-
sented by the molecular component. In the stratum with the water injection, the convective component is
prevalent; the thermal conductivity is the sum of the coefficients of molecular and convective heat conduction
(the ratio λ1

 ⁄ λ << 1).
From the foregoing it also follows that a small parameter in the problem in question can be introduced

formally and afterward set equal to unity, since the radius of convergence of the obtained series increase in-
definitely with time.

With the small parameter ε, it is expedient to seek the solution in the form of series of perturbation
theory:

T = T(0) + εT(1) + ε2T(2) + ... ,   T1 = T1
(0) + εT1

(1) + ε2T1
(2) + ... ,

T2 = T2
(0) + εT2

(1) + ε2T2
(2) + ... . (2.1)

The superscript in parentheses here and subsequently corresponds to the order of expansion in ε.
Certain ideas of the application of the method of a small parameter to heat-conduction problems are

described in [6].
In this work, selection of the small parameter for the system of equations is proposed such that the

zeroth-order approximation results in a concentrated-capacity scheme [1-4]. Furthermore, solutions of the prob-
lem in the zeroth-order and first approximations are obtained, and the method of finding higher approximations
is described.

3. Simplification of the System of Equations by the Small Parameter. Having substituted expression
(2.1) into relations (1.1)-(1.7) and having grouped terms of the same order in ε, we obtain the following system
of equations:

∂T1
(i)

∂t
 = 

∂2T1
(i)

∂z2  ,   i = 0, 1, 2, ... ; (3.1)

λ1b2

λ2

 
∂T2

(i)

∂t
 = 

∂2T2
(i)

∂z2  ,   i = 0, 1, 2, ... ; (3.2)

∂2T(0)

∂z2  = 0 ; (3.3)

b 
∂T(i−1)

∂t
 = 

∂2T(i)

∂z2  − 
B

λ1r
 
∂T(i−1)

∂r
 ,   i = 1, 2, 3, ... ; (3.4)

∂T(0)

∂z



 z=1

 = 0 ;   
∂T(0)

∂z



 z=−1

 = 0 ; (3.5)

∂T(i)

∂z



 z=1

 = 
∂T1

(i−1)

∂z



 z=1

 ;   
∂T(i)

∂z



 z=−1

 = 
λ2

λ1
 
∂T2

(i−1)

∂z



 z=−1

 ,
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i = 1, 2, 3, ... ; (3.6)

T(i)
_z=1 = T1

(i)
_z=1 ;   T(i)

_z=−1 = T2
(i)
_z=−1 ,   i = 0, 1, 2, ... ; (3.7)

T(i)
_t=0 = 0 ;   T1

(i)
_t=0 = 0 ;   T2

(i)
_t=0 = 0 ,   i = 0, 1, 2, ... ; (3.8)

T(0)
_r=0 = 1 ; (3.9)

T(i)
_r→+∞ = 0 ;   T1

(i)
_z→+∞ = 0 ;   T2

(i)
_z→ − ∞ = 0 ,   i = 0, 1, 2, ... . (3.10)

The systems of equations (3.1)-(3.10) with a specified i permit a problem formulation for the approximation of
the corresponding order.

4. Solution of the Problem in the Zeroth-Order Approximation. From expression (3.4) for i = 1 we
obtain

b 
∂T(0)

∂t
 = 

∂2T(1)

∂z2  − 
B

λ1r
 
∂T(0)

∂r
 . (4.1)

According to Eqs. (3.3) and (3.5), the solution of the problem for the zeroth-order approximation is
independent of z and has the form T(0) = A(t, r), where A(t, r) is an indefinite function of the time t and the
coordinate r. Then, all terms of Eq. (4.1) that contain the temperature in the zeroth-order approximation are
independent of z. Let us write

b 
∂T(0)

∂t
 + 

B
λ1r

 
∂T(0)

∂r
 ≡ R (t, r) , (4.2)

where R(t, r) is a function that is independent of z.
With account for expression (4.2), Eq. (4.1) is written as

∂2T(1)

∂z2  = R (t, r) .
(4.3)

Having integrated Eq. (4.3) twice, we obtain an expression for the stratum temperature in the first ap-
proximation:

∂T(1)

∂z
 = zR (t, r) + N (t, r) , (4.4)

T(1) = 
z2

2
 R (t, r) + zN (t, r) + G (t, r) . (4.5)

From Eq. (3.6) for i = 1 and Eq. (4.4) at the boundaries z = 1 and z = −1, we obtain a system of two
equations for R(t, r) and N(t, r), whence

R (t, r) = 
1

2
 
∂T1

(0)

∂z



 z=1

 − 
1

2
 
λ2

λ1
 
∂T2

(0)

∂z



 z=−1

 , (4.6)
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N (t, r) = 
1

2
 
∂T1

(0)

∂z



 z=1

 + 
1

2
 
λ2

λ1
 
∂T2

(0)

∂z



 z=−1

 . (4.7)

Assuming i = 0 in Eqs. (3.1), (3.2), (3.7), (3.8), and (3.10) and taking account of Eqs. (4.1), (4.2), and
(4.6), we obtain the following boundary-value problem in the zeroth-order approximation: 

∂T1
(0)

∂t
 = 

∂2T1
(0)

∂z2  ,   t > 0 ,   z > 1 ; (4.8)

λ1b2

λ2

 
∂T2

(0)

∂t
 = 

∂2T2
(0)

∂z2  ,   t > 0 ,   z < − 1 ; (4.9)

b 
∂T(0)

∂t
 = − 

B

λ1r
 
∂T(0)

∂r
 + 

1

2
 
∂T1

(0)

∂z



 z=1

 −

− 
1

2
 
λ2

λ1
 
∂T2

(0)

∂z



 z=−1

 ,   t > 0 ,   r > 0 ,   _z_ < 1 ; (4.10)

T(0) = T1
(0)
_z=1 = T2

(0)
_z=−1 ; (4.11)

T(0)
_t=0 = 0 ;   T1

(0)
_t=0 = 0 ;   T2

(0)
_t=0 = 0 ; (4.12)

T(0)
_r=0 = 1 ;   T(0)

_r→+∞ = 0 ;   T1
(0)
_z→+∞ = 0 ;   T2

(0)
_z→−∞ = 0 . (4.13)

Condition (4.11) follows from Eq. (3.7) for i = 0 and the aforementioned z-independence of T(0).
The obtained boundary-value problem (4.8)-(4.13) coincides with the problem obtained according to the

concentrated-capacity scheme [1-4]. It is solved using the Laplace−Carson transform. In the image space we
obtain

T1
(0)P = T(0)P exp (− √p  (z − 1)) , (4.14)

T2
(0)P = T(0)P exp 



√





λ1b2

λ2




 p (z + 1)




 , (4.15)

T(0)P = exp 



− 

λ1r2

2B
 




1

2
 



1 + √




λ2b2

λ1








 √p  + bp








 . (4.16)

The superscript P here and subsequently indicates that the corresponding expressions are written in the image
space.

Converting to inverse transforms, we obtain expressions for the temperature in the stratum and the sur-
rounding rocks:
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T(0) = erfc 













λ1r
2 




1 + √




λ2b2

λ1









8B √


t − 

λ1br2

2B

















 I 



t − 

λ1br2

2B




 , (4.17)

T1
(0) = erfc 













λ1r2

4B
 



1 + √




λ2b2

λ1








 + (z − 1)

2 √



t − 

λ1br2

2B

















 I 



t − 

λ1br2

2B




 , (4.18)

T2
(0) = erfc 













λ1r2

4B
 



1 + √




λ2b2

λ1








 − √




λ1b2

λ2




 (z + 1)

2 √



t − 

λ1br2

2B

















 I 



t − 

λ1br2

2B




 . (4.19)

The zeroth-order asymptotic approximations (4.17)-(4.19) for the stratum and the surrounding rocks co-
incide with solutions obtained according to the concentrated-capacity scheme and conform to the actual tem-
perature distribution. It is known that the concentrated-capacity scheme is suitable for calculation of the mean
temperatures. However, it does not permit an evaluation of the error that arises; for this, subsequent approxi-
mations must be considered. It should be noted that finding the first, second, etc. approximations requires ad-
ditional conditions.

5. Problem Formulation in the First Approximation. Let us find an expression for the stratum tem-
perature in the first approximation. For i = 2, Eq. (3.4) takes the form

b 
∂T(1)

∂t
 = 

∂2T(2)

∂z2  − 
B

λ1r
 
∂T(1)

∂r
 .

(5.1)

From Eqs. (5.1) and (4.5) we obtain

∂2T(2)

∂z2  = 
z2

2
 L
^

R (t, r) + zL
^

N (t, r) + L
^

G (t, r) , (5.2)

where

L̂ = b 
∂
∂t

 + 
B

λ1r
 
∂
∂r

 .

From Eq. (3.6) for i = 2 and on integrating Eq. (5.2) at the boundaries z = 1 and z = −1, we obtain a
system of two equations for L̂G(t, r) and M(t, r):

L
^

G (t, r) = 
1

2
 
∂T1

(1)

∂z



 z=1

 − 
1

2
 
λ2

λ1
 
∂T2

(1)

∂z



 z=−1

 − 
1

6
 L
^

R (t, r) , (5.3)
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M (t, r) = 
1

2
 
∂T1

(1)

∂z



 z=1

 + 
1

2
 
λ2

λ1
 
∂T2

(1)

∂z



 z=−1

 − 
1

2
 L
^

N (t, r) . (5.4)

Having substituted the expressions for R(t, r) and N(t, r) from Eqs. (4.6) and (4.7) and for L̂G(t, r)
from Eq. (5.3) into Eq. (5.2), we formulate, based on Eq. (5.1), a mathematical statement of the problem for
the first expansion coefficients:

∂T1
(1)

∂t
 = 

∂2T1
(1)

∂z2  ,   t > 0 ,   z > 1 ; (5.5)

λ1b2

λ2

 
∂T2

(1)

∂t
 = 

∂2T2
(1)

∂z2  ,   t > 0 ,   z < − 1 ; (5.6)

b 
∂T(1)

∂t
 + 

B

λ1r
 
∂T(1)

∂r
 − 

1

2
 
∂T1

(1)

∂z



 z=1

 +
1

2
 
λ2

λ1
 
∂T2

(1)

∂z



 z=−1

 = 

= 




z2

4
 + 

z
2

 − 
1
12




 L
^

 




∂T1
(0)

∂z



 z=1

  



 −

− 




z2

4
 − 

z
2

 − 
1
12




 L
^

 




λ2

λ1
 
∂T2

(0)

∂z



 z=−1

  



 ,   t > 0 ,   r > 0 ,   _z_ < 1 ; (5.7)

T(1)
_z=1 = T1

(1)
_z=1 ;   T

(1)
_z=−1 = T2

(1)
_z=−1 ; (5.8)

T(1)
_t=0 = 0 ;   T1

(1)
_t=0 = 0 ;   T2

(1)
_t=0 = 0 ; (5.9)

T(1)
_r→+∞ = 0 ;   T1

(1)
_r→+∞ = 0 ;   T2

(1)
_r→ −∞ = 0 . (5.10)

However, solution of problem (5.5)-(5.10) necessitates an additional condition that is derived below.
6. Obtaining Additional Conditions for Determination of the Temperature in the First and

Higher Approximations. In order to find an additional condition for determining T(1), Eq. (1.3) is averaged
with respect to z between the limits −1 and 1 using determination of the mean value and equalities (1.4).

It is not difficult to assure ourselves that the boundary-value problem for determining the mean tem-
perature in the stratum and the corresponding temperatures in the surrounding rocks coincides with the bound-
ary-value problem for the zeroth-order approximation (4.8)-(4.13). From the uniqueness of the solution of the
corresponding problems for the mean values 〈T〉 and the zeroth-order approximation T(0) it follows that 〈T〉 =
T(0). On the other hand, upon averaging, from expression (2.1) we obtain 〈T〉 = T(0) + ε〈T(1)〉  + ε2〈T(2)〉  + ... .
Thus, for all expansion coefficients of order above zeroth the following equalities must be fulfilled:

〈T(1)〉 = 0 ,   〈T(2)〉  = 0 ,   ... ,   〈T(i)〉 = 0 ,   ... . (6.1)

It is the equality 〈T(1)〉  = 0 that is the sought additional condition for determining the first expansion
coefficients. Averaging expression (4.5) over the surface r = r0, we obtain an expression relating R(t, r) to G(t, r):
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G (t, r0) = − 
1
6

 R (t, r0) . (6.2)

From the foregoing it follows that the asymptotic solution conforms to the solution of the initial prob-
lem averaged over the vertical coordinate in the interval of the stratum. We also showed that the expansion
coefficients thus obtained correspond to the Taylor coefficients of expansion of the exact solution of the initial
problem only if it is additionally required that condition (6.2) be fulfilled on the line where the boundary con-
dition is specified, i.e., for r0 = 0.

7. Solution of the Problem in the First Approximation. Solution of Eqs. (5.5) and (5.6) offers the
opportunity to obtain expressions for the first expansion coefficients in the image space for the surrounding
rocks:

T1
(1)P = T(1)P

_z=1 exp (− √p  (z − 1)) , (7.1)

T2
(1)P = T(1)P

_z=−1 exp 


√





λ1b2

λ2




 p (z + 1)




 . (7.2)

Equation (5.7) for the first expansion coefficient in the stratum is equivalent to Eq. (5.3) for the func-
tion G(t, r). The integration constant for the solution of Eq. (5.3) is found from condition (6.2).

Expression (4.5) with account for Eqs. (4.6) and (4.7) and the expression for G(t, r), which in the
image space is written as

GP (p, r) = 




√p
12

 



1 + √




λ2b2

λ1








 + 

λ1b (r2 − r0
2) p

8B
 




1

3
 ×

× 



1 + √




λ2b2

λ1









 2

 + 



1 − √




λ2b2

λ1









 2


  



 T(0)P ,

permits construction of the solution for the first expansion coefficient in the stratum in the image space:

T(1)P = 


K1 (z) √p  + K1 (r) p



 T(0)P , (7.3)

where

K1 (z) = 
1

2
 




1

6
 



1 + √




λ2b2

λ1








 − 




1 − √




λ2b2

λ1








 z −

− 
1

2
 



1 + √




λ2b2

λ1








 z2




 ;

K1 (r) = 
λ1b (r2 − r0

2)
8B

 




1

3
 



1 + √




λ2b2

λ1









 2

 + 



1 − √




λ2b2

λ1









 2



(K1(z) is a second-degree polynomial in the variable z, and K1(r) is a function of r).
The solution of problem (5.5)-(5.10) is substantially simplified on the averaging surface for r = r0,

when the function K1(r) = 0. For the expansion coefficients in the stratum in the image space on the averaging
surface, the following equation holds:

1305



T(i)P = Ki (z) pi ⁄ 2 T(0)P , (7.4)

where Ki(z) is a polynomial of degree 2i in the variable z. The first coefficient of the asymptotic expansion is
obtained from Eqs. (5.5)-(5.10) for r0 = 0.

Based on expression (7.3) it is established that the radius of convergence of the power series (2.1) in
the image space is proportional to 1 ⁄ √p , which corresponds to √ t  in the inverse transforms. Hence, the radius
of convergence for long times reaches values much larger than unity. This implies that, for such times, the
solutions also hold for ε larger than unity; therefore, in most practically important cases two terms are suffi-
cient for obtaining solutions with a small error.

Converting to inverse transforms, from Eqs. (7.3), (7.1), and (7.2) we obtain for the first expansion

T(1) = 
1

√



π 




t − 

λ1br2

2B









 













K1 (z) + 

K1 (r) λ1r2 



1 + √




λ2b2

λ1









8B 



t − 

λ1br2

2B

















 ×

× exp 













− 

λ1
2r4 




1 + √




λ2b2

λ1









 2

64B2 



t − 

λ1br2

2B
















 I 




t − 

λ1br2

2B




 , (7.5)

T1
(1) = 

1

√



π 




t − 

λ1br2

2B









 ×

× 














K1 (1) + 

K1 (r) 







λ1r
2

4B
 



1 + √




λ2b2

λ1








 + (z − 1)








4 



t − 

λ1br2

2B


















 ×

× exp 














− 








λ1r2

4B
 



1 + √




λ2b2

λ1








 + (z − 1)








2

4 



t − 

λ1br2

2B


















 I 



t − 

λ1br2

2B




 , (7.6)

T2
(1) = 

1

√



π 




t − 

λ1br2

2B









 ×
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× 














K1 (− 1) + 

K1 (r) 







λ1r2

4B
 



1 + √




λ2b2

λ1








 − √




λ1b2

λ2




 (z + 1)








4 



t − 

λ1br2

2B


















 ×

× exp 














− 








λ1r2

4B
 



1 + √




λ2b2

λ1








 − √




λ1b2

λ2




 (z + 1)








2

4 



t − 

λ1br2

2B


















 I 



t − 

λ1br2

2B




 , (7.7)

where

K1 (1) = − 
1

3
 



2 − √




λ2b2

λ1








 ;   K1 (− 1) = − 

1
3

 



2 √




λ2b2

λ1




 − 1




 .

It is possible to verify the validity of expressions (7.5)-(7.7) by direct substitution into Eqs. (5.5)-(5.10).
The final solutions for the two approximations found are written as

T = T(0) + 
λ1

λ
 T(1) ,   T1 = T1

(0) + 
λ1

λ
 T1

(1) ,   T2 = T2
(0) + 

λ1

λ
 T2

(1) . (7.8)

The concentrated-capacity scheme, which was previously used for describing actual processes, contains
certain approximations whose error cannot be assessed within the framework of the scheme itself. The method
of a small parameter permits evaluation of the relative error of this scheme in the form

δ = 
T − T(0)

T
 = 

εT(1)

T(0) + εT(1) ;   δ = 
Tj − Tj

(0)

Tj

 = 
εTj

(1)

Tj
(0) + εTj

(1) ,   j = 1, 2 . (7.9)

It should be noted that higher-order corrections contribute much less to the error.
8. Graphical Representation of Results. Based on the analytical solutions obtained, graphs are con-

structed for space-time temperature distributions in the stratum and the surrounding rocks in the zeroth-order
and first approximations. Graphs of the relative error of the zeroth-order approximation δ as a function of the
coordinate z are also presented.

In Fig. 2, the numeral 1 denotes curves corresponding to the zeroth-order approximation (4.17)-(4.19);
2, to the first coefficient of the expansion (7.5)-(7.7); 3, to the solution in the first approximation (7.8); and 4,
to the relative error (7.9). All graphs are constructed in dimensionless coordinates for the following values of
the physical quantities: volumetric heat capacity of the stratum, 695 kcal/(m3⋅oC), and of the surrounding rocks,
770 kcal/(m3⋅oC); thermal conductivity of the stratum, 2.23 kcal/(m⋅h⋅oC), and of the surrounding rocks, 1
kcal/(m⋅h⋅oC); water flow rate, 600 m3/day; stratum thickness, 10 m [7]. All graphs are constructed for the
distance r = 20.

From curve 1 (Fig. 2a) for the zeroth-order approximation, z-independence of T is observed in the stra-
tum interval −1 < z < 1, which is what should occur in accordance with the concentrated-capacity scheme. The
first expansion coefficient (curve 2) assumes both negative and positive values within the limits of the stratum.
Owing to allowance for the correction, the solution in the first approximation (curve 3) reflects the temperature
distribution in the stratum more realistically, which manifests itself in its dependence on z. It is seen from the
figure that the zeroth-order approximation describes the temperature distribution in the stratum center in deficit
and the temperature distribution along the stratum edges in excess. In the surrounding media, the zeroth-order
approximation gives an excessive value of the temperature.
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In the zeroth solution, there is a sharp change in the curve slope at the stratum boundaries. On the
first-approximation curve 3, a slope discontinuity at the boundaries z = ±1 is visually detected, although this
discontinuity is decreased in comparison with the zeroth-order approximation (curves 1 and 3).

Curve 4 reflects the dynamics of the relative errors for the stratum and the surrounding rocks. At two
points of the stratum, where the curve of the first expansion coefficient intersects the z axis, the error is zero.
In the surrounding media the error increases, which is linked with the temperature decrease.

Figure 2b corresponds to fairly large values ε = 1 (ε < R) at long times t = 10. The curves of the
zeroth-order (curve 1) and first (curve 3) approximations in the surrounding rocks are close, which implies that
the method of a small parameter can be used with a small error even for large ε. The first approximation in
the stratum rectifies the drawback of the concentrated-capacity scheme. Thus, with decrease in ε and increase
in the time, the error of the concentrated-capacity scheme decreases. For longer times, the discontinuity of the
curves at the stratum boundaries in the first approximation is reduced, and conditions (1.4) are fulfilled more
accurately.

9. Comparison of  Results of Calculating the Temperature Fields Based on the Method of a
Small Parameter with Experimental Data. Experimental data for the temperature fields in oil strata are
known in the literature [1, 8]. We took these data as a basis for comparison of theory and experiment.

Figure 3 presents measurement results (continuous curves) and results calculated for the temperature by
the method of a small parameter in the first approximation on the calculation surface at r = r0 (dashed curves).
The calculation was carried out by Eq. (7.8) with account for Eqs. (4.17) and (7.5). The dimensionless tem-
perature is laid off as the abscissas, and the distance from the stratum bottom is laid off as the ordinates; the
markers on the curves correspond to the distance from the pressure well expressed in units of the stratum
thickness. These curves correspond to the dimensionless time t = 0.245.

Theoretical curves are constructed for the same instant of time and the same distances from the axis of
the pressure well. It is seen from the figure that the discrepancy between the experimental and theoretical
curves is insignificant and is no greater than 10%. Such good agreement between the theoretical and experi-

Fig. 2. Graphs of the temperature T and the relative error δ as functions
of the dimensionless coordinate z: a) ε ≈ 0.45, t = 0.5; b) ε = 1, t = 10.

Fig. 3. Comparison of theoretical results with experimental data: 1) ex-
perimental curves; 2, 3) calculated curves in the first and zeroth-order ap-
proximation, respectively.
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mental curves indicates that the application of the method of a small parameter provided adequate calculating
equations even in the first approximation.

The same figure presents calculated curves (dashed lines) in the zeroth-order approximation by Eq.
(4.17). As follows from the theory, these curves correspond to the mean values of the stratum temperature.

The results of the comparison of the theoretical results and the experimental data indicate that the
method of a small parameter can be used for calculating the temperatuire fields in deep-lying strata.

CONCLUSIONS

1. The method of a small parameter can be used with success for solving a class of heat-conduction
problems describing the temperature fields in oil and gas strata.

2. It is established that use of the method of a small parameter requires additional conditions for the
problem. We managed to obtain higher-order approximations using a new integral condition that follows from
coincidence of the mean temperatures in the stratum cross section and the zeroth-order approximation.

3. It is shown that, in the Laplace−Carson image space, the coefficients of expansion of the solution in
ε of order i contain products of the zeroth-order expansion coefficient, a polynomial in the variable z of degree
2i, and the parameter of the Laplace−Carson transform p

i⁄2. The time dependence of the radius of convergence
is found.

4. Based on the analytical solutions obtained, the error of the concentrated-capacity scheme is evaluated
for the first time, and the ranges of its application to practical calculations are determined. With the aid of the
method of a small parameter, it is proved that the scheme accuracy increases with increase in the time and
with decrease in the ratio of the thermal conductivities of the surrounding rocks and the stratum λ1

 ⁄ λ. It is
demonstrated that, for relative times t >> 1, it is sufficient to retain two terms in the resultant solution. Analyti-
cal expressions are found for the coefficients of expansion of the sought solutions of the problem for the zeroth
and first orders.

NOTATION

zd, rd (z, r), dimensional (dimensionless) cylindrical coordinates; τ (t), dimensional (dimensionless)
time; 2h, stratum thickness; Td, Td1, and Td2 (T, T1, and T2), temperatures (dimensionless temperatures) in the

stratum and the surrounding rocks, respectively; T0, temperature of the injected fluid; λ, λ1, and λ2, thermal
conductivities in the stratum and the surrounding rocks, respectively; c, c1, and c2, specific heats of the stratum

and the surrounding rocks; ρ, ρ1, and ρ2, densities of the stratum and the surrounding rocks; Q, fluid flow rate;

p, parameter of the Laplace−Carson transform; erfc (x) = 
2

√π
 c ∫

x

∞

exp (−u2)du; I(t), Heaviside unit function.

Subscripts: 1 and 2, overlying and underlying rocks.
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